A Supervised Wavelet Transform Algorithm for R Spike Detection in Noisy ECGs
نویسندگان
چکیده
The wavelet transform is a widely used pre-filtering step for subsequent R spike detection by thresholding of the coefficients. The time-frequency decomposition is indeed a powerful tool to analyze non-stationary signals. Still, current methods use consecutive wavelet scales in an a priori restricted range and may therefore lack adaptativity. This paper introduces a supervised learning algorithm which learns the optimal scales for each dataset using the annotations provided by physicians on a small training set. For each record, this method allows a specific set of non consecutive scales to be selected, based on the record’s characteristics. The selected scales are then used for the decomposition of the original long-term ECG signal recording and a hard thresholding rule is applied on the derivative of the wavelet coefficients to label the R spikes. This algorithm has been tested on the MIT-BIH arrhythmia database and obtains an average sensitivity rate of 99.7% and average positive predictivity rate of 99.7%.
منابع مشابه
A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain
Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...
متن کاملA Supervised Learning Approach Based on the Continuous Wavelet Transform for R Spike Detection in ECG
One of the most important tasks in automatic annotation of the ECG is the detection of the R spike. The wavelet transform is a widely used tool for R spike detection. The time-frequency decomposition is indeed a powerful tool to analyze non-stationary signals. Still, current methods use consecutive wavelet scales in an a priori restricted range and may therefore lack adaptivity. This paper intr...
متن کاملA two-step method for damage identification and quantification in large trusses via wavelet transform and optimization algorithm
In the present study, a two-step approach for damage prognosis in long trusses is suggested in which the first step deals with locating probable damages by wavelet transform (WT) and static deflection derived from modal data with the intention of declining the subsequent inverse problem variables. Then, in the second step, optimization based model updating method using Artificial Bee Colony (AB...
متن کاملA New Algorithm for Voice Activity Detection Based on Wavelet Packets (RESEARCH NOTE)
Speech constitutes much of the communicated information; most other perceived audio signals do not carry nearly as much information. Indeed, much of the non-speech signals maybe classified as ‘noise’ in human communication. The process of separating conversational speech and noise is termed voice activity detection (VAD). This paper describes a new approach to VAD which is based on the Wavelet ...
متن کاملA Hybrid Method for Mammography Mass Detection Based on Wavelet Transform
Introduction: Breast cancer is a leading cause of death among females throughout the world. Currently, radiologists are able to detect only 75% of breast cancer cases. Making use of computer-aided design (CAD) can play an important role in helping radiologists perform more accurate diagnoses. Material and Methods: Using our hybrid method, the background and the pectoral muscle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008